Composite numbers and prime regressive isols
نویسندگان
چکیده
منابع مشابه
Chebyshev's bias for composite numbers with restricted prime divisors
Let π(x; d, a) denote the number of primes p ≤ x with p ≡ a(mod d). Chebyshev’s bias is the phenomenon for which “more often” π(x; d, n) > π(x; d, r), than the other way around, where n is a quadratic nonresidue mod d and r is a quadratic residue mod d. If π(x; d, n) ≥ π(x; d, r) for every x up to some large number, then one expects that N(x; d, n) ≥ N(x; d, r) for every x. Here N(x; d, a) deno...
متن کاملRegressive Ramsey Numbers Are Ackermannian
We give an elementary proof of the fact that regressive Ramsey numbers are Ackermannian. This fact was first proved by Kanamori and McAloon with mathematical logic techniques. Nous vivons encore sous le règne de la logique, voilà, bien entendu, à quoi je voulais en venir. Mais les procédés logiques, de nos jours, ne s’appliquent plus qu’à la résolution de problèmes d’intérêt secondaire. [1, 192...
متن کاملPrime Slaughter: Playful Prime Numbers
Starting from the difficulty of creating playful representation of domain-specific abstract concepts, this study discusses the design of Prime Slaughter, a computer game aimed at facilitating individual sense-making of abstract mathematical concepts. Specifically the game proposes a transpositionmathematical concepts. Specifically the game proposes a transposition of primality and factorization...
متن کاملPrime and Composite Polynomials*
where each <p,(z) is a polynomial of degree greater than unity, prime or composite, we shall say that (2) is a decomposition of F(z). The first result of the present paper is that any two decompositions of a given polynomial into prime polynomials contain the same number of polynomials; the degrees of the polynomials in one decomposition are the same as those in the other, except, perhaps, for ...
متن کاملSharp thresholds for hypergraph regressive Ramsey numbers
The f -regressive Ramsey number R f (d, n) is the minimum N such that every colouring of the d-tuples of an N -element set mapping each x1, . . . , xd to a colour ≤ f(x1) contains a min-homogeneous set of size n, where a set is called min-homogeneous if every two d-tuples from this set that have the same smallest element get the same colour. If f is the identity, then we are dealing with the st...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Pacific Journal of Mathematics
سال: 1976
ISSN: 0030-8730,0030-8730
DOI: 10.2140/pjm.1976.62.49